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Summary. A selection index which maximizes genetic
gains in a desired direction has been previously sug-
gested. We extend this index to the case where desired
relative genetic gains are constrained to be not less or
not greater than pre-specified levels. Further, we suggest
an index for desired relative genetic gains constrained
to be between certain levels. All these indices are ob-
tained using quadratic programming techniques.
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Introduction

In multiple trait selection for genetic improvement of
animal and plant populations, Smith (1936) and Hazel
(1943) presented a selection index which maximized
the improvement of an overall genetic-economic value.
Later, Kempthorne and Nordskog (1959) introduced
the idea of a restricted selection index which restricts
the genetic changes of certain traits. Subsequently,
many other types of constrained selection indices were
proposed by Tallis (1962, 1985), Harville (1974, 1975),
Rao (1962, 1965), and others. All of these indices are
based on the relative economic values of component
traits.

However, the assignment of the relative economic
values is not always easy; reasons for difficulties were
described by Yamada etal. (1975) as: (1) in some
traits, no standard for assigning relative economic
values is readily available, e.g., body conformation;
(2) in some traits, the assumption that the relative eco-
nomic values remain constant over the range of varia-

tion is not satisfied; and (3) when some restrictions were
assigned, the relative economic values were no longer
the same as those of the unconstrained selection index.

Lin (1978) also summarized the difficulties of as-
signing relative economic values: (1) when the relative
economic values are derived from direct economic
analysis of a production system, some traits are hard to
define objectively; (2) when the relative economic
values are derived from multiple regression analysis,
they vary depending on how profit is defined, the num-
ber of traits considered in multiple regression equation
and sampling variability; and (3) the relative economic
values may change from time to time or vary from one
location to another.

For these reasons, index selection has not been used
extensively in practice until recently, despite its theo-
retical superiority in efficiency.

On the other hand, Pe$ek and Baker (1969) sug-
gested a selection index to attain predetermined desired
genetic gains, Their index is fundamentally different
from that of Smith (1936) and Hazel (1943): it does not
require the definition of aggregate economic values in
the derivations. Yamada et al. (1975) proposed a selec-
tion index that attains predetermined breeding goals at
a minimum number of generations of selection. The
breeding goals are defined as ultimate levels of the
traits of interest, expressed as deviations from present
population means. (In general, the breeding goals do
not mean desired genetic gains in one generation, but
mean desired genetic gains in an uncertain number of
generations.) Brascamp (1979) and Itoh and Yamada
(1986) discussed the theoretical basis of this index in
more detail. Similar indices were derived by Harville
(1975), Rouvier (1977), Essl (1981) and Tallis (1985).
The advantage of this index is that it does not require
relative economic value for each component trait.
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One may argue that the difficulty with this index in
practice is to choose a set of proper levels of com-
ponent traits. It is, however, not difficult for an ex-
perienced breeder, because he must know the relative
merits and demerits of his strain as a result of the
Random Sample Test or a critical comparison with
competitors’ stocks (Yamada etal. 1975). For these
reasons, we conclude that the selection indices based
on the relative economic values are ideal from a theo-
retical point of view, but the selection indices for
attaining the breeding goals often more useful from a
practical point of view.

There are some cases, however, where it is difficult
or unnecessary to precisely determine breeding goals of
certain traits. In such cases, it may be more convenient
and efficient to improve the population in a direction
within a permissible range, than to improve it in a
direction of strictly fixed goals. Furthermore, there are
cases where one does not know, or does not want to
specify, the breeding goals for certain traits, but simply
wants to avoid their deterioration. An inequality con-
straint forcing the genetic changes for such traits to be
merely non-negative seems then much more adequate
than the arbitrary choice of a direction of genetic
improvement.

Within the conventional selection index framework,
Rao (1962) suggested an index constraining genetic
gains for some traits to be non-negative. An easier
procedure was proposed by Mallard (1972), Rao (1965)
and Harville (1974) further discussed more general
indices with constraints. All of these indices are com--
puted using non-linear programming techniques.

In the present paper, similar techniques are applied
to the index for selection in a direction within a ac-
ceptable range, for which an a priori knowledge of
relative economic values is not required.

Methods

Selection index for improvement in a desired direction

A brief description of the index of Yamada etal. (1975) for
attaining pre-specified breeding goals is first necessary, be-
cause this index provides the basic ideas for its extension in
this paper.

To describe it, we use the following notations:

b annx 1 vector of index weights

p an nx1 vector of phenotypic values expressed as devia-
tions from their respective means

g, anm x | vector of additive genetic values

P an nxn phenotypic variance covariance matrix, i.e.,
P=Var(p)

G an nxm covariance matrix between p and g, i.c., G, =
Cov (p. 91)

k, anm x 1 vector of desired relative genetic gains

I aselection index, i.e., I=4'p

i the intensity of selection

o1 the standard deviation of the index, i.e., oy = /b’ Pb.

If q is a vector of breeding goals expressed as the devia-
tions from present means, then the vector k; can be defined as
ki =o4q, where a is an arbitrary positive scalar. A simple
example of k; is kj =[1|2], which means that, in one genera-
tion of selection, the expected genetic gain of the second trait
is desired to be twice as large as the expected genetic gain of
the first one, i.e., E(4g9,)=2E(4g,), where E(4g;) and
E(4g,) represent the expected genetic gains of trait 1 and
trait 2, respectively (see Fig. 1). Vector k; can have elements
equal to zero, which means that no genetic change of the cor-
responding trait is desired. Note that no relative economic
value nor aggregate genotypic value is assumed here.

After one generation of selection, we have the expected
genetic gains as:

E(4g,)=iCov(g,,)/o;=i G, b/s,. (1)

To make E(44;) proportional to pre-specified k;, b must
satisfy the following condition:

iGb/o;=0k, )

where 6§ is an arbitrary positive scalar. Let us assume § = i/gy,
then b is a solution of

G b=k, . (3)
Substituting (3) into (1), we get

E(4¢9,) =ik,/0;. 4)
If n = m, equation (3) has a unique solution as

b=(G) k.

If »> m, no unique solution exists. But E(4g,) is inversely
proportional to g, therefore the best choice among all solu-
tions is the vector b corresponding to the minimum value of
oy, thus maximizing the absolute values of the elements of
E (44,) in (4). Then the optimal b should satisfy

min b Pbh.
b1Gib=ky}

We denote the problem of finding this b as:

G b=k
b Pb minimum.
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Fig. 1. Diagram illustrating the desired relative genetic gains
such that E(4g,) =2E(4g,). A sloping arrow represents the
desired direction of genetic improvement



The solution of (5) can be written explicitly as:
b=P1G, (G P~ G)) k. ®)

This process of deriving (6) was described by Itoh and
Yamada (1985).

The index for desired relative genetic gains not less than
or not greater than certain levels

Partition the traits into two groups, and let the desired relative
genetic gains of the first group be equal to k; and those of the
second group be equal to or larger than k,. For example, for
simplicity consider only two traits. If the genetic gain for
trait 2 is desired to be at least twice the genetic gain for trait 1
(i.e.,, E(4g9;) = 2E (4g,)) (see Fig. 2), then take k;=1 as a
reference and k; = 2. If the genetic change for trait 2 is desired
to be simply non-negative (E (4g,) = 0), we set k; =1, again
as a reference, and k, = 0.

Let g, and g, be the vectors of additive genetic values of
the first and second groups, respectively, and let G,=
Cov (p, ¢1) and G, = Cov (p, g;). Then, in the same way as (3)
was derived, it can be shown that b is a solution of:

Gib=k and Gibzk,.

If no unique solution exists, the optimal b is such that

Gy b=k,
Gibz=k, (7
FPbh minimum.

This is problem of quadratic programming. Note that the prob-
lem dealing with only inequality constraints has no practical
meaning, because the equality constraints provide the neces-
sary standards for the relative gains. Therefore, k; should in-
volve at least one non-zero element. Then we can interpret (7)
as the problem of obtaining b which maximizes the absclute
values of the elements of E (4g,) = i k,/0; subject to G{ b=k,
and Gy b= k,.
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Fig. 2. Diagram illustrating the desired relative genetic gains
such that E(dg,;) = 2E(4g,). A shaded area represents the
desired range of genetic improvement
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Conversely, we can consider the problem that the desired
relative genetic gains of a group of traits are equal to k,, and
those of another group of traits are equal to or less than kj.
For example, if only two traits are considered and k; =1 and
k3= 2, then the genetic gain of trait 2 is desired to be equal to
or less than twice that of trait 1 (E(dg,) =2E(44,)). A
simpler example is the case where a certain element of k;
equals zero, which means that the genetic change of the cor-
responding trait is desired to be zero or negative.

Let g5 be a vector of additive genetic values of the traits of
the latter group and put G, = Cov (p, g3); the optimal b of this
problem is such that

Gib=k,
Gib =k, ®
b Pb minimum.

Further, it is also possible to combine these two problems
(7) and (8); the combined problem is such that

Gi b = k]

Gi b= k2

Gy b=k, ®)
¥ Pb minimum.

The index for desired relative genetic gains
between certain levels

Relative genetic changes can also be constrained to be be-
tween two sets of levels. This constraint is useful when one can
determine only approximate desired relative genetic gains of
some traits.

We assume that desired relative genetic gains of a group
of traits are k|, and those of another group of traits are be-
tween k, and ks, where ky and ks represent the lower and
upper limits of the permissible ranges of the desired relative
genetic gains. For example, if only two traits are considered
and k=1, k4= 1.5 and ks=2, then we want 1.5E(4g,) =
E(4g,) = 2E(4g,) (see Fig. 3).
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Fig. 3. Diagram illustrating the desired relative genetic gains
such that 1.5E(4g,) = E(4g,;) =2E(4dg,). A shaded area
represents the desired range of genetic improvement
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Let g4 be a vector of additive genetic values of the traits of
the latter group and put G,= Cov(p, g,4), then the optimal b
of this problem is such that

Gi b=k
ky=Gib=ks
b Pb minimum .

(10)

This problem also can be solved by quadratic programming.

It is possible to make any combination with the other
types of constraints mentioned, and the combined problem
with the constraints of all four types is such that

Gl b=k,
Gybzk,

G3b= ks
ki=Gib=ks

b Pb minimum.

am

Computing techniques

All the indices described in this paper can be computed using
quadratic programming techniques. In our problem, the opti-
mal solution is always found at one of the boundaries of a
region constructed with the equality and inequality con-

Table 1. Phenotypic and genotypic variances and covariances.
Phenotypic variances and covariances are above the diagonal
and genotypic variances and covariances are below the diagonal

EW (¢%) EP (%) BW (kg?)
13.3949
EwW —1.8371 0.2417
6.6974
100.7805
EP 2.1345 —0.1326
30.2341
0.0698
BW 0.1376 0.
0.0314

straints. These boundaries are determined by all possible com-
binations of equations. For example, the boundaries of the
problem (11) are determined by all possible combinations of
the following equations:

G b=k, Gob=k,, Gib=k;, Gib=k, and Gib=ks.

(12)
Therefore, we can obtain the optimal solution of this problem
as follows:

1) Calculate indices as in (6) for each possible combination of
the equality constraints of (12).

2) Eliminate those that do not satisfy the inequalities in (11).
3) Select the index with a minimum variance from the ones
that are left.

This procedure resembles that of Mallard (1972). The major
difference is that we attempt to minimize the variance of the
index and not to maximize its efficiency.

Numerical examples

To illustrate the indices, we will use a flock of poultry
as an example. Traits considered are egg weight (EW),
egg production rate (EP) and body weight (BW). Their
phenotypic and genotypic variances and covariances
are given in Table 1.

Examples of indices for various desired relative
genetic gains are given in Table 2. In Index 1, the
genetic gain of EP is desired to be 0.5 times as large as
that of EW, and that of BW is desired to be —0.1 times
as large as that of EW. On the other hand, in Index 2,
the genetic gain of EP is desired to be greater than or
equal to 0.5 times that of EW. This index has a smaller
variance than Index 1, and gives larger expected ge-
netic gains than Index 1, not only in EP but also in EW
and BW. In Index 3, the same relative genetic gains in
EW and EP as those of Index 1 are desired, but the
genetic change of BW is desired to be zero or negative.
This index has a much smaller variance, and gives
much larger expected genetic gains in EW and EP
than Index 1. In Index 4, the relative genetic gains in EP
and BW are desired to be between certain levels. This

Table 2. Examples of indices for various relative desired genetic gains

No. Relative desired Index weights Variance  Expected genetic gains?

genetic gains of the

index

EW EP BW EW EP BW EW EP BW
1 =1 =05 =-0.1 0.2360 0.0001 —4.2191 1.5073 0.8145 0.4073 -0.0815
2 =1 =205 =-01 0.2326 0.0096 —4.2042 1.4976 0.8172 0.6424 —0.0817
3 =1 =05 = 0 0.1623 0.0051 -0.7713  0.3329 1.7332 0.8666 0.
4 =1 =204 =-0.08 0.2201 0.0045 -3.5123 1.1387 0.9371 0.5623 —-0.0750

=06 =-012

@ The selection intensity is assumed to be 1



Table 3. Process of calculation of the last example in Table 2

Equality constraints of desired Satisfies the  Variance of
relative genetic gains inequalities? the index
EW EP BW

=1 No 0.2901
=1 =04 No 0.2938
=1 =0.6 No 0.2901
=1 =-0.12 No 1.9235
=1 =—0.08 No 1.1359
=1 =04 =-012 Yes 1.9444
=1 =04 =-008 Yes 1.9292
=1 =0.6 =-0.12 Yes 1.1506
=1 =0.6 =—-008 Yes 1.1387

index has a smaller variance and gives larger expected
genetic gains in EW and EP than Index 1.

The examples in Table 2 were computed using the
procedure described in ““Computing techniques.” Inter-
mediate results illustrating the computations for the
last example in Table 2 are presented in Table 3. Nine
indices for nine combinations of equality constraints of
desired relative genetic gains are calculated, and four
of them satisfy the inequalities; among them the 7th
index has the minimum variance, 4.3583, so this is the
optimum index.
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