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Summary. A selection index which maximizes genetic 
gains in a desired direction has been previously sug- 
gested. We extend this index to the case where desired 
relative genetic gains are constrained to be not less or 
not greater than pre-specified levels. Further, we suggest 
an index for desired relative genetic gains constrained 
to be between certain levels. All these indices are ob- 
tained using quadratic programming techniques. 
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Introduction 

In multiple trait selection for genetic improvement of 
animal and plant populations, Smith (1936) and Hazel 
(1943) presented a selection index which maximized 
the improvement of an overall genetic-economic value. 
Later, Kempthorne and Nordskog (1959) introduced 
the idea of a restricted selection index which restricts 
the genetic changes of certain traits. Subsequently, 
many other types of constrained selection indices were 
proposed by Tallis (1962, 1985), Harville (1974, 1975), 
Rao (1962, 1965), and others. All of these indices are 
based on the relative economic values of component 
traits. 

However, the assignment of the relative economic 
values is not always easy; reasons for difficulties were 
described by Yamada etal. (1975) as: (1) in some 
traits, no standard for assigning relative economic 
values is readily available, e.g., body conformation; 
(2) in some traits, the assumption that the relative eco- 
nomic values remain constant over the range of varia- 

tion is not satisfied; and (3) when some restrictions were 
assigned, the relative economic values were no longer 
the same as those of the unconstrained selection index. 

Lin (1978) also summarized the difficulties of as- 
signing relative economic values: (1) when the relative 
economic values are derived from direct economic 
analysis of a production system, some traits are hard to 
define objectively; (2) when the relative economic 
values are derived from multiple regression analysis, 
they vary depending on how profit is defined, the num- 
ber of traits considered in multiple regression equation 
and sampling variability; and (3) the relative economic 
values may change from time to time or vary from one 
location to another. 

For these reasons, index selection has not been used 
extensively in practice until recently, despite its theo- 
retical superiority in efficiency. 

On the other hand, Pe~ek and Baker (1969) sug- 
gested a selection index to attain predetermined desired 
genetic gains. Their index is fundamentally different 
from that of Smith (1936) and Hazel (1943): it does not 
require the definition of aggregate economic values in 
the derivations. Yamada et al. (1975) proposed a selec- 
tion index that attains predetermined breeding goals at 
a minimum number of generations of selection. The 
breeding goals are defined as ultimate levels of the 
traits of interest, expressed as deviations from present 
population means. (In general, the breeding goals do 
not mean desired genetic gains in one generation, but 
mean desired genetic gains in an uncertain number of  
generations.) Brascamp (1979) and Itoh and Yamada 
(1986) discussed the theoretical basis of this index in 
more detail. Similar indices were derived by Harville 
(1975), Rouvier (1977), Essl (1981) and Tallis (1985). 
The advantage of this index is that it does not require 
relative economic value for each component trait. 
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One  m a y  argue  that  the diff icul ty with this index in 
practice is to choose a set o f  p roper  levels o f  com-  
ponen t  traits. It is, however ,  not  diff icul t  for an  ex- 
per ienced breeder ,  because  he mus t  know the relat ive 
meri ts  and  demer i t s  o f  his s t ra in as a result  o f  the 
R a n d o m  Sample  Test  or  a critical compar i son  with 
compet i tors '  stocks ( Y a m a d a  e ta l .  1975). Fo r  these 
reasons, we conc lude  that  the select ion indices based 
on the relat ive economic  values  are ideal  f rom a theo-  
retical po in t  o f  view, bu t  the select ion indices for 
a t ta in ing  the b reed ing  goals of ten more  useful f rom a 
practical  po in t  o f  view. 

There  are some cases, however ,  where  it is diff icult  
or  unnecessary  to precisely de t e rmine  b reed ing  goals o f  
certain traits. In such cases, it ma y  be more  conven ien t  
and eff icient  to i mp ro v e  the popu la t i on  in  a d i rec t ion 
wi th in  a permiss ib le  range,  t han  to improve  it in  a 
d i rec t ion of  strictly fixed goals. Fu r the rmore ,  there are 
cases where  one does no t  know,  or does not  want  to 
specify, the b reed ing  goals for cer ta in  traits, bu t  s imply  
wants to avoid their  de ter iora t ion.  An  inequa l i ty  con- 
s traint  forcing the genet ic  changes for such traits to be 
mere ly  non-nega t ive  seems then  m u c h  more  adequa te  
than  the a rb i t ra ry  choice of  a d i rec t ion  of  genet ic  
improvemen t .  

W i t h i n  the conven t iona l  select ion index f ramework,  
Rao  (1962) suggested an  index  cons t ra in ing  genet ic  
gains for some traits to be  non-negat ive .  An  easier 
p rocedure  was p roposed  by Mal la rd  (1972), Rao  (1965) 
and  Harvil le (1974) fur ther  discussed more  general  
indices with constraints .  All o f  these indices are com--  
pu ted  us ing n o n - l i n e a r  p r o g r a m m i n g  techniques .  

In the present  paper ,  s imi la r  t echniques  are appl ied  
to the index for select ion in  a d i rec t ion wi th in  a ac- 
ceptable  range,  for which  an  a pr ior i  knowledge  of  
relat ive economic  values  is no t  required.  

Methods 

Selection index for  improvement in a desired direction 

A brief description of the index of Yamada et al. (1975) for 
attaining pre-specified breeding goals is first necessary, be- 
cause this index provides the basic ideas for its extension in 
this paper. 

To describe it, we use the following notations: 

b an n • 1 vector of index weights 
p an n • 1 vector of phenotypic values expressed as devia- 

tions from their respective means 
gl an m x 1 vector of additive genetic values 
P an n x n  phenotypic variance covariance matrix, i.e., 

P = Var (p) 
Gj an n xm covariance matrix between p and gl, i.e., G 1 = 

Cov (p, 0 1 )  

k I an m • 1 vector of desired relative genetic gains 
I a selection index, i.e., I = b'  p 
i the intensity of selection 
a I the standard deviation of the index, i.e., aI = V ~ P b .  

If q is a vector of breeding goals expressed as the devia- 
tions from present means, then the vector k I can be defined as 
k I = ~ q, where e is an arbitrary positive scalar. A simple 
example of k I is k~ = [1 [ 2], which means that, in one genera- 
tion of selection, the expected genetic gain of the second trait 
is desired to be twice as large as the expected genetic gain of 
the first one, i.e., E ( A O 2 ) = 2 E ( A # ] ) ,  where E(A91) and 
E(A92 ) represent the expected genetic gains of trait 1 and 
trait 2, respectively (see Fig. 1). Vector k 1 c a n  have elements 
equal to zero, which means that no genetic change of the cor- 
responding trait is desired. Note that no relative economic 
value nor aggregate genotypic value is assumed here. 

After one generation of selection, we have the expected 
genetic gains as: 

E (301) = i Cov ( 0 1 ,  I ) / a I  = i G] b /a  I . (1) 

TO make E(301) proportional to pre-specified k], b must 
satisfy the following condition: 

i G~ b /a  I = 0 k 1 (2) 

where 0 is an arbitrary positive scalar. Let us assume 0 = i/t71, 
then b is a solution of 

6~ t, = k~. (3) 

Substituting (3) into (1), we get 

E ( A g l )  = ik] It71 . (4) 

If n = m, equation (3) has a unique solution as 

/ ,= (a~) -1 k~. 

If n > m, no unique solution exists. But E (zig1) is inversely 
proportional to al,  therefore the best choice among all solu- 
tions is the vector b corresponding to the minimum value of 
at, thus maximizing the absolute values of the elements of 
E (391) in (4). Then the optimal b should satisfy 

min b' P b . 
{biGib=kl} 

We denote the problem of finding this b as: 

{ G~ b = k 1 
b ' P b  minimum. (5) 

E (Ag z) 

2 units 

0 1 unit ~ E (Z~g 0 

Fig. l .  Diagram illustrating the desired relative genetic gains 
such that E (392) = 2 E (AGO. A sloping arrow represents the 
desired direction of genetic improvement 



The solution of (5) can be written explicitly as: 

b =  p - I  GI (G~ p -1G1) - I  kl , (6) 

This process of deriving (6) was described by Itoh and 
Yamada (1985). 

The index for  desired relative genetic gains not less than 
or not greater than certain levels 

Partition the traits into two groups, and let the desired relative 
genetic gains of the first group be equal to k I and those of the 
second group be equal to or larger than k 2. For example, for 
simplicity consider only two traits. If the genetic gain for 
trait 2 is desired to be at least twice the genetic gain for trait 1 
(i.e., E(A#2 ) ~ 2 E ( A 9 1 ) )  (see Fig. 2), then take k l =  1 as a 
reference and k 2 = 2. If the genetic change for trait 2 is desired 
to be simply non-negative (E (A92) ~ 0), we set k I = I, again 
as a reference, and k 2 = 0. 

Let 01 and 02 be the vectors of additive genetic values of 
the first and second groups, respectively, and let G 1 = 
Cov (p, 01) and G2 = Cov (p, 02). Then, in the same way as (3) 
was derived, it can be shown that b is a solution of: 

G [ b = k l  and G ~ b ~ k  2. 

If no unique solution exists, the optimal b is such that 

G;b=k 
G~ b ~_ k 2 

b' P b minimum. 
(7) 

This is problem of quadratic programming. Note that the prob- 
lem dealing with only inequality constraints has no practical 
meaning, because the equality constraints provide the neces- 
sary standards for the relative gains. Therefore, k I should in- 
volve at least one non-zero element. Then we can interpret (7) 
as the problem of obtaining b which maximizes the absolute 
values of the elements of E (A Or) = i k I/tr I subject to Gi b = k I 
and G~ b ~_ k 2 . 
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Conversely, we can consider the problem that the desired 
relative genetic gains of a group of traits are equal to kl,  and 
those of another group of traits are equal to or less than k 3. 
For example, if only two traits are considered and k I = 1 and 
k 3 = 2, then the genetic gain of trait 2 is desired to be equal to 
or less than twice that of trait 1 ( E ( A g 2 ) ~ 2 E ( A o l ) ) .  A 
simpler example is the case where a certain element of k 3 
equals zero, which means that the genetic change of the cor- 
responding trait is desired to be zero or negative. 

Let g3 be a vector of additive genetic values of the traits of 
the latter group and put G 3 = Cov (p, g3); the optimal b of this 
problem is such that 

{ G~ b = k l 

G; b _-< k3 (8) 
b' P b minimum. 

Further, it is also possible to combine these two problems 
(7) and (8); the combined problem is such that 

G~ b = k) 

G~ b _-> k 2 
G~ b ~ k 3 (9) 

b' P b minimum. 

The index for  desired relative genetic gains 
between certain levels 

Relative genetic changes can also be constrained to be be- 
tween two sets of levels. This constraint is useful when one can 
determine only approximate desired relative genetic gains of 
some traits. 

We assume that desired relative genetic gains of a group 
of traits are k l ,  and those of another group of traits are be- 
tween k 4 and k 5, where k 4 and k 5 represelat the lower and 
upper limits of the permissible ranges of the desired relative 
genetic gains. For example, if  only two traits are considered 
and k I = l, k 4 =  !.5 and ks=  2, then we want 1.5 E(dg l )_~  
E (rig2) ~ 2E(Agt )  (see Fig. 3). 

E (Ag z) 

2 units 

= E (Ag 1) 
1 unit 

Fig. 2. Diagram illustrating the desired relative genetic gains 
such that E (AGE) ~ 2 E (Agl). A shaded area represents the 
desired range of genetic improvement 

E (Ag 2) 

2 units 

1.5 units 

�9 E [Ag 1) 
0 1 unit 

Fig. 3. Diagram illustrating the desired relative genetic gains 
such that 1.5 E(Agl)  ~ E(dg2) ~ 2E(Agl) .  A shaded area 
represents the desired range of genetic improvement 
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Let 04 be a vector of additive genetic values of the traits of 
the latter group and put G 4 = C o v  (p ,  04), then the optimal b 
of this problem is such that 

{ G ~ b : k  1 
k 4 <- G~ b < k 5 
b' P b minimum.  

(10) 

This problem also can be solved by quadratic programming. 
It is possible to make any combination with the other 

types of constraints mentioned, and the combined problem 
with the constraints of all four types is such that 

G~ b = k l 
G~ b > k 2 
G~ b -< k 3 (11) 
k 4 -< G~ b -< k 5 

b' P b minimum.  

Computing techniques 

All the indices described in this paper can be computed using 
quadratic programming techniques. In our problem, the opti- 
mal solution is always found at one of the boundaries of a 
region constructed with the equality and inequality con- 

Table 1. Phenotypic and genotypic variances and covariances. 
Phenotypic variances and covariances are above the diagonal 
and genotypic variances and covariances are below the diagonal 

EW 

EP 

E W ( g  2) EP (%2) 

.3949 -1.8371 

2.1345 ~ . ~ . 7 8 0 5  

3~2341 ~ 

BW 0.1376 0. 

BW (kg 2) 

0.2417 

-0.1326 
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straints. These boundaries are determined by all possible com- 
binations of equations. For example, the boundaries of the 
problem (11) are determined by all possible combinations of 
the following equations: 

G~ b = kl, G~ b = k2, G~ b = k3, G~ b = k 4 and G~ b = ks. 

(12) 

Therefore, we can obtain the optimal solution of this problem 
as follows: 

1) Calculate indices as in (6) for each possible combination of 
the equality constraints of (12). 
2) Eliminate those that do not satisfy the inequalities in (11). 
3) Select the index with a minimum variance from the ones 
that are left. 

This procedure resembles that of Mallard (1972). The major 
difference is that we attempt to minimize the variance of the 
index and not to maximize its efficiency. 

Numerical examples 

To i l lustrate the indices,  we will use a flock of  poul t ry  
as an example.  Trai ts  cons idered  are egg weight  (EW),  
egg produc t ion  rate (EP) and  body weight  (BW). The i r  
phenotypic  and  genotypic  var iances and  covariances 
are given in Table  1. 

Examples of  indices for var ious desired relat ive 
genet ic  gains are given in Tab le  2. In Index 1, the 
genetic gain  of  EP is desired to be 0.5 t imes as large as 
that  o f  EW, and  that  of  BW is desired to be - 0 . 1  t imes 
as large as that  o f  EW. On  the o ther  hand,  in  Index 2, 
the genet ic  ga in  of  EP is desired to be greater  than  or 
equal  to 0.5 t imes that  o f  EW. This  index has a smal ler  
var iance  than  Index 1, and  gives larger expected ge- 
netic gains than  Index 1, not  only in  EP bu t  also in  EW 
and BW. In  Index 3, the same relat ive genet ic  gains  in 
EW and EP as those of  Index 1 are desired, bu t  the 
genetic change of  BW is desired to be zero or negative.  
This  index has a m u c h  smal ler  var iance,  and  gives 
much  larger expected genet ic  gains in  E W  and  EP 
than Index 1. In Index 4, the relative genetic gains in EP 
and  BW are desired to be be tween  cer ta in  levels. This  

Table 2. Examples of indices for various relative desired genetic gains 

No. Relative desired Index weights Variance 
genetic gains of the 

index 
EW EP BW EW EP BW 

Expected genetic gains a 

EW EP BW 

1 = 1 = 0.5 = - 0 . 1  0.2360 0.0001 -4.2191 1.5073 

2 = 1 ~ 0.5 = - 0.1 0.2326 0.0096 -4.2042 1.4976 

3 = 1 = 0.5 ~ 0 0.1623 0.0051 -0.7713 0.3329 

4 = 1 ~ 0.4 ~ - 0 . 0 8  0.2201 0.0045 - 3.5123 1.1387 
0.6 ~ - 0.12 

0.8145 0.4073 

0.8172 0.6424 

1.7332 0.8666 

0.9371 0.5623 

- 0.0815 

- 0.0817 

0. 

- 0.0750 

a The selection intensity is assumed to be 1 



Table 3. Process of calculation of the last example in Table 2 

Equality constraints of desired 
relative genetic gains 

EW EP BW 

Satisfies the Variance of 
inequalities? the index 

= 1 No 0.2901 
= 1 = 0.4 No 0.2938 
= 1 = 0.6 No 0.2901 
= 1 = 0.12 No 1.9235 
= 1 = 0.08 No 1.1359 
= 1 = 0.4 = - 0.12 Yes 1.9444 
= 1 = 0.4 = - 0.08 Yes 1.9292 
= 1 =0.6 = - 0 . 1 2  Yes 1.1506 
= 1 = 0.6 = - 0.08 Yes 1.1387 

index has a smaller variance and gives larger expected 
genetic gains in EW and EP than Index 1. 

The examples in Table 2 were computed using the 

procedure described in "Computing techniques. "" Inter- 

mediate results illustrating the computations for the 
last example in Table 2 are presented in Table 3. Nine  

indices for nine combinat ions of  equali ty constraints of  

desired relative genetic gains are calculated, and four 

of  them satisfy the inequalities; among them the 7th 
index has the min imum variance, 4.3583, so this is the 

op t imum index. 
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